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ABSTRACT

We describe a systematic analysis of energy transfer processes in

crystals of YAG doped with varying concentrations of Cr and Tm. We use

both spectral measurements and measurements of the temporal response to

pulsed excitation to give independent determinations of the microscopic

interaction parameter for Cr to Tm transfer. We discuss the different

factors in influencing the temperature dependence of the Cr to Tm

transfer. Finally, we determine the dependence of the Tm

cross-relaxation rate on Tm concentration.

I. INTRODUCTION

Recently there has been an interest in the development of a solid

state laser operating in the "eye-safe" region of the spectrum

(wavelengths greater than 1.54 microns). This interest has led to

renewed studies of the interionic processes among Cr, Tm and Ho ions in

various crystalline hosts. The 517 , 518 transition of the triply

ionized Holmium ion is a good candidate for a 2-micron laser as it has a

large cross-section and a lone upper state lifetime. Thulium is expected

to be a good sensitizer for Holmium because it has an efficient cross

relaxation and energy transfer coupling to the upper laser level of Ho.

Furthermore, Thulium absorbs around 780 nm so it could be pumped directly

Advances in ,Vonradiative Processes in Solids
Edited by B. Di Barto[o, PlenumPress, New York, 1991
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by a semiconductor diode laser or indirectly by energy transfer from

flashlamp pumped Chromium. In order to obtain pulses short enough for

several of the proposed applications it is necessary to operate the laser

in a Q-switched mode. Design of lasers to operate in this mode requires

a thorough knowledge of the transfer rates for each of the various

interionic processes coupling the energy of the pump to the laser

transitions. We have _nitiated a systematic study of the energy transfer

among Cr, Tm and Ho ions in YAG as a first step in the analysis of

Q-switched operation of lasers based on the Ho ion sensitized by Cr and

Tm. In this paper we shall focus on the Cr, Tm system, describing a

general set of procedures aimed at obtaining detailed information on the

energy transfer processes. We shall also mention the cross relaxation

process in Tm. This work provides a clear example of the energy transfer

processes discussed in references I and 2.

II. CHROMIUM TO THULIUM ENERGY TRANSFER

II.A. The Transfer Process

The energy levels of Cr and Tm are shown in Figure I. We shall be

interested in the following energy pathway. Energy absorbed in the broad

Cr absorption bands (4T I, 4T 2) rapidly goes to the 2E level. From Cr: 2E

Tm 3F 2 and 3F 3 levels. From there itthe energy transfers to the

nonradiatively populates the 3H 4 level. Tm may undergo a cross-

relaxation [3H 4, 3H 6 _ 3F 4, 3F4] to the 3F 4 level from which it feeds the

upper laser level in Ho. In this article we shall focus attention on the

Cr to Tm transfer and the Tm cross-relaxation.

i

r_

w

We are considering a crystalline host in which two ionic species can

carry an optical excitation; donor ions D are initially excited and may

subsequently transfer this excitation to acceptor ions A. The rate of

energy transfer, by a dipole-dipole transition, from a donor ion to an

acceptor ion separated by a distance R is proportional to the inverse of

the sixth power of R, [3]

WDA = C

The coefficient C

(6)/R6. (1)

(6)
is called the microscopic interaction parameter. It

is convenient to express it in terms of the effective decay time of the

donor ion (in the absence of any acceptors) T O and a characteristic

interaction radius R 0

tj

==

W
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Energy levels of Cr, and Tm In YAG.

C (6) = RO6/TO . (2)

When the two ions are separated by R 0 the rate of energy transfer to an

acceptor is equal to the decay rate for an isolated donor,

Generally speaking we are considering two types of measurements -

steady state spectral measurements and measurements of the temporal

response to pulsed excitation. We can use each type of measurement to

get an independent determination of the inter-ionlc interaction rate.

Experiments with pulsed excitation lead to effective decay times of

the donor ion. This decay time in a sample without acceptors gives the

lifetime of the donor level rO and in a sample with acceptors it displays

the lifetime shortening due to the energy transfer process. Experiments

389
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with steady state excitation yield the emission spectra of the donor ions

and the absorption spectra of the acceptor ion.

We should mention here that the donor ions may also transfer energy

among themselves, diffusing the excitation. The more donor diffusion

competes with donor to acceptor energy transfer the more difficult it is

to extract information from the examination of the donor luminescence.

This interference increases with increasing concentration of donors and

leads to the different regimes discussed in reference 2.

II.B. Temperature Dependence of Energy Transfer

An important part of the experimental strategy demonstrated here

involves examination of the variation of the various physical quantities

with temperature. There are several ways in which the temperature

dependence of these phenomena yield valuable information. First of all,

there is some intrinsic interest in the temperature dependence of these

factors. In addition, there is evidence that two phenomena may be

related if they share the same temperature dependence. Finally, a

statistical enhancement of the data accrues from the examination of the

tendency of thermal variation.

II.C. Spectroscoplc Heasurements

As discussed in reference I there are three separate factors which

contribute to the microscopic interaction parameter - the oscillator

strengths for electronic dipole-dipole transitions in the donor ion

emissions and in acceptor ion absorption and the spectral overlap between

the donor emission and the acceptor absorption. The first of these, the

donor oscillator strength, is proportional to the reciprocal of the decay

time of the donor (in the absence of acceptors); this can be determined

directly from the decay curves. The second, the acceptor oscillator

strength is proportional to the integral of the acceptor absorption

spectra over the wavelength range of the manifold. The third, the

overlap integral can be calculated from the donor emission and the

acceptor absorption spectra.

Figure 2 shows the Tm absorption spectrum and the Cr emission

spectrum for two temperatures. While both spectra show broadening with

temperatures the Cr broadening is much more extensive. There is a

sideband developing on the high energy side of the Cr- Emission lines

which overlaps with the (3H 6 * 3H 4) Tm absorption.
The temperature

dependence of the overlap integral is due primarily to the development of
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this sideband in resonance with Tm absorption. The Tm absorption does

not change significantly with temperature and consequently the Tm

oscillator strength remains constant with temperature. Using this

spectral data we can determine the temperature dependence of the Cr-Tm

overlap and the Tm absorption oscillator strength. The oscillator

strength of the Cr emission is proportional to the reciprocal lifetime of

Cr in the absence of Ho. The temperature dependence of each of these

three factors is shown in Fig. 3. As can be seen there is little change

of the Tm absorption integral with temperature over the range of

temperature shown. There is a slight change in the overlap integral at

lower temperatures reflecting the development of the anti-Stokes

sideband. At the higher temperatures of interest in laser operation the

dominant change in the microscopic interaction parameter is due to

changes in the Cr emission oscillator strength.

II.D. Time Resolved Spectra

Thetime resolved spectra also gives evidence of the energy

transfer. As can be seen in Figure 4, the temporal response to pulsed

excitation for Cr alone is exponential. For crystals with higher Tm

concentration this response becomes non-exponential. At early times it

displays the rapid transfer of excitation from Cr to those Tm ions which

are nearby. As time increases and the number of available nearby Tm ions

decreases, the energy transfer rate diminishes and the decay curve

settles into an exponential behavior. Evidence for energy migration

among the Cr ions can be seen in the slopes of the decay curves at longer

times. As the concentration of Cr increases the magnitude of the slopes

increases.

As shown in (I) the time dependence of the decay curve is given by

l(t) = I0 p(t} (3)

where p(t) is given explicitly in reference I. Taking the natural

logarithm of this we obtain an expression that is quadratic in t I/2 and

depends on three parameters.

In(I(t)) = _ - _ t I/2 - _ t (4)

The measured data was fit to this expression to find the values of

(a,g,_) that minimize mean square error. As shown in reference 1 these

parameters are
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The microscopic interaction parameter determined by both

spectroscopic measurements and by fitting the decay curves to

temporal response predicted in Eq.(4).

w

= In (IO)

= (n/TO)I/2 (C/C 0 )

= 1/T 0 + K D

(5)

After obtaining the best fitting, we compare the measured life time with

the coefficient of t.

II.E. Cr to Tm Microscopic Interaction Parameter

As we have discussed, it is possible to determine the microscopic

interaction parameter by two independent techniques, one using

spectroscopic data and the other from time resolved date. The

microscopic interaction parameter calculated from both techniques is

shown in Figure 5. As evident there is qualitative agreement between the

results of the two methods. The curved line shown in the figure is a

best fit to the data points; as discussed previously the temperature

dependence of the microscopic interaction parameter is due to the three

independent factors so that the shape of the fitted curve cannot be

explained further.

w
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III. THULIUM CROSS-RELAXATION
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Finally, we wish to describe the Tm cross relaxation process. To

determine the transfer rate we examine the concentration quenching of Tm.

That is the decrease in lifetime of the Tm level with increasing

concentration. This concentration quenching effect is shown in Figure 6.

Fitting the concentration dependence of the lifetime to the quadratic

formula

• : _0 / [1 + (C/C0)2 ]
(6}

determine the intrinsic lifetime of Tm 3H 4 and the associatedwe can half

concentration (the concentration of Tm at which the intrinsic lifetime is

decreased by half). Using the intrinsic lifetime we can then separately

determine the cross-relaxation rate. The concentration dependence of

this rate is shown in Figure 7.

w

z_±

m

i

u

IV. SUMMARY

In this paper we have described an analysis of energy transfer

processes occurring in Cr, Tm:YAG. We have used both spectral

measurements and decay curves to provide separate determinations of the

microscopic interaction parameter for the Cr to Tm transfer. By

examining the temperature dependence of the various factors contributing

to the microscopic interaction parameter we have been able to demonstrate

that its temperature variation, above 20OK, is due primarily to changes

in the Cr lifetime. Concentration quenching in the Tm cross-relaxation

led to a determination of the cross-relaxation rate.

This work was performed at the Solid State Laser Materials

Laboratory, NASA Langley Research Center, Hampton, VA and supported by

NASA grants NAG-I-796, NAG-I-955 and NAG-I-957.
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Recently, research has been conducted on the optical properties of materials as-

sociated with the (levelopInent of a solid-state laser in the 2 micron region. In

support of this effort a mathem,ttical model describing the energy transfer in a

hohnium laser sensil.ized with thulium is developed. In this paper we establish

some qualitative properties of the solution of the model, such as nonnegativity,

boundedness and mtcgrabili'' ty. A local stability _tnalysis is then performed from

which conditions for asymptotic stability are obtained. Finally, we report on our

numerical aualysis of t,he system and how it compares with experimental results.
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In the early 1980's there was a renewal of interest in solid-state lasers, due in

large part to the development and availability of new host materials. It was around

tlds time that NASA began investigating tunable solid-state lasers as promising

candidates for the Earth Observing System(Eos). During the past several years

research has been conducted on the sensitized holmium laser, which operates in

the near infra-red region. It can be used as a source for both LIDAR(Lfght

Detection And gangillg) and DIAL(Dlffereutial Absorption and Lidar) as well as

on aircraft to make 13opplet" lidar measurements of windshear since it operates in

the eye-safe region.

In a solhl-st_tte h,ser, a dopant ion substitutes directly into the host lattice.

When tlm htnthanidc rare earth ion hohniuln(tlo) is used as a dopant in the host

crystal yttrium aluininum garnet(YaAlsO_2), the hohnium ion substitutes into

the yttrium sites. Tl,is induces a weak coupling to the host lattice that results

in narrower absorl)tiun _md emission features than those commonly observed in

transition metals. :\ltlmugh the hohnium laser has high gain and good energy

storage properties, ioi_ic interactions among tlle hohnium ions limit the concen-

tration of hohnium possilole in any host; therefore to increase tile optical energy

absorbed, a sensitizi_g ion is included. In the laser system under consideration,

the lanthanlde rare ,'_trth ion thulium(Tin) is used as a sensitizer for holmium.

The interactions l_ctwccn Lllulium and holmium ions increase the efficiency of the

Tm-Ilo laser but at tim cost of introducing more nonlinearities into the model.
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These nonlinearities make both the analysis and the laser dynamics significantly

different than solid-state laser dynamics studied previously.

The model comprises thulium ions in energy levels att4, aF4, and all6 ; holmium

ions in energy levels 5Is, 5It, and Sis; and the photon density in the optical cavity.

There are two main types of processes considered in the laser system; namely,

those processes ttmt are inter-ionic--involving the transfer of excitation from one

ion to another-- and those that are not. Inter-ionic processes include: .... ,

relaxation, back transfer, and up-conversion. Processes that are not inter-ionlc

include: spontaneous emission, absorption and stimulated emission. The model

d_es not account for spatial dependence of excitation in the crystal rod but rather

utilizes a spacial average over the length of the rod.

In the next section, the system of equations for the electron populations and

photon density is introduced and discussed. \,Ve then establish some qualitative

properties of the solution to the system. After that a local stability analysis is

performed and finally the system is subjected to a numerical treatment and the

numerical solution compared with experimental results obtained in the laboratory.

The Model of the Laser Dynamics

The energy level diagram for the Tm a+ ion and the Ito a+ ion in YAG [1] is the

basis for the idealized model, Figure 1, of lasing action.[ Insert Figure 1 J For

the remainder of the discussion the following correspondence is made as a matter

of notational convenience: thulium energy levels atI6, aF_, and alt4 correspond

to energy levels 0,1, and 2, respectively and holmium energy levels sis, sir, and

2

J
L-- •
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5I s correspond to energy levels 0',1', and 2' respectively. The number of thulium

ions, per cm 3, in energy level i and at time t will be denoted Ni(t) ; i = 0, 1,2.

Similarly, the number of holmium ions, per cm 3, in energy level i' and at time t

will be denoted hi(t) ; i = 0, 1,2 .

The temporal evolution of the dopant electron populations is described by the

set of rate equations given by

dN_(0 N_(t)
dt r2

dNt(t) t_½(t) N_(t)

, dt r7l rl
-t-2C/'/o(t)Ar2(t) + C'( No(t)n,(t)

- c,:",;,(t),,o(O+ q',No(t),,_(l)- ,-l,N,(t),_,(O

.N,(t)dNo(t) _ -_l',,(_)No(t)+ :";_(t---2)+ CNo(t).,v_(t)
dt r2o rl

+ C'l.",':(t),,o(t)- c;";,;o(t),,,(t) + q,_"rt(L),,,(O- q',.'Vo(O,"_(O

W

d,,_(t) ,,._(h- q,:',',(_),,,(0 q',_','o(t),,_(t)
!

dt r_

d,,,,(0 ,_(:) ,,,(t)
dt r_ i rt

+ c, ,v,(t),_o(Z)- c; :%(t),,, (z)

=

W

u
w
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In this system, C,C[,CI,ql, and q'l represent the probability of cross relax-

ation, back transfer, forward transfer, up-conversion, and down-conversion, re-

spectively. All of these processes are depicted in Figure 1. The pumping rate is

denoted by Wp(t) an,1 represents the number of photons, per microsecond, avail-

able to excite electroi_s in etlergy level 0 to energy level 2.

The quantities r,, r[ i = 1,2 represent the spontaneous emission lifetime of

1
energy level i,i', respectively. The quantity, --, represents the transition rate

1
(due to spontaneous emission) fronl level i to level j. Similarly, -- represents the

-/-?.
t/

spontaneous emission transition rate from level i' to level j' . These two quantities

satisfy the relations

1 _ 1 1 i-i I-- = -- and --,= _ --, i= 1,2
ri j=0 rlj r,. j=0 rij

The photon density is denoted by ¢(t) and the rate equation describing the

temporal evolution of the photon density in the optical cavity is given by

d_(t) _ ,,o-¢(t) ,,,(l) 9o To
d t rI t

IIere, cr denotes the transition cross section, v is the velocity of light in the laser

crystal, gl is the nulnber of manifolds associated with energy level 1' and likewise

=
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for go. The contribution due to spontaneous emission of holmium ions in energy

level 1' is denoted Spo and the fluorescent lifetime of tile material is denoted r]t.

The lifetime of a photon in the optical cavity is denoted by % and can be expressed

_s [2]

2g¢/c
T,:=

- hi R1R2'

where e_ is tile length of the optical cavity, c is the velocity of light in vacuo and

R_ _: R= denote the rcflect.ivity of the two mirrors. The electron populations of

thulium and holmium are constrained by the relations

_2

L--
m

W

= :

W

W

w

= =

Nr = N0(l)+ ,V,(t)+ N_(,)

"where N'r is the concc_tration of tllulium ions, per cm 3, and n'r is the concentra-

tion of holmium ions, per cm a.

These "population constraints" can be rewritten as

No(t) = N.r- N,(_) - N_(_) .,,,t ,,0(t) = ,_r - ,_,(t) - ,_=(t) (4)

Substituting these expressions for No(l) and no(/.) into system (1) reduces the

system from six to foyer equations. Then by including the rate equation for the

photon density (2) we obtain

W

a =

dN2(t) N2(l)
dt _ W_(t)(_V_.- N,(t)- N_(t)) "_ CN2(t)(NT - N,(t)- N2(t))

_N,(t) N_(t) ,V,(t)
dt v21 r t

+'2CN=(t)(NT- N,(g)- N2(t))

w



,,...

+ c;',,,(_)(:v:,-- N,(t)- ;,_(0)- C,_V,(t)(,-,r- _,(_)- "_(0)

k

L

+ q',,,_(t)(:,"r- _v,(t)- ;,'_(t))- q,&(_),,,(t)

_It q,&(t),,,(t) ,
_',,_ T 2

[J

i4

W

q',,-,_(t)(_v:_-.,v,(t)- s_(t))

_,,,(0 ,-,_(_) .,(l)
dt _l _

+ c, ;,,q(t)(,,.:,.- ,,,(_)- ,,_(_))

- c;'.,(t)(,.v_.- ;,q(t)- ;,':(t)) + q',,,_.(t)(Nv- ,v,(0- N_(z))

_4

k...,

= =

r_
w

W

m:.:___

The coupled system (5) is the temporal model of the laser system expressed in

terms of the physical variables. We now normalize system (5) to put it into the

form used for the analysis and calculations of the subsequent sections. Hence, let

&(t)
x(0 -

Nr

_',',(t)
,a(t) -

N./,



w

:(t)
7l 7"

m

w

w

= ::

m

= =

k,#

,_(l) -

p(L) = ¢(t) (s)
Cnol'?_l

be tile normalized variables. Rewriting tile rate equations (5) in terms of the

normalized variables (6) yields

dx x

-- = ---- Dlx(1 -x-y)ell IG(t)(1 - x- v) ,_

"f
m_

r

= =

dy .r , y

d t "r,2] rl
+ 2D,._(1- _ - ,j) + D_(1 - ._- v)

- _):,j(1 z - ,,,) + D_w(1- ._- _) - D;yz

N

L_

=--
=z

W

dzt) lu

- DsyZ----D_w(1-x-y)
dt r.;

dz lo z

!
dt r" 1 r I

+ D.,y(1 - z- w)- Dsz(1 - x- y)

=_

u

+ 1),,,,(_ - ._- ,j)- z)s_; - _,[-_: + (i -_)(1 -_)]p

_I
w

u



N

=

w

at - 3_[-1: + (1 - -/)(1 - w)]- - P + #3z (7)
Tc

L

where

D1 = CNr D., = Cll\r'r Dr = qt71T #t = _V_anorm

D2 = ClTZT Ds = C[NT Ds = ClIArT

w

7

4

w

W

w

!

Da = C_,IT D6 = q'l,ZT D9 = q'lNT /33 -- sP° nT

Qualitative Analysis

In this section the full set of equations, (7), is modified by excluding two physi-

cal processes--up-coltversion and 1)ack transfer. This yields a simplified system for

which certain qualitative properties of the solution are established. Throughout

this discussion, the parameters are assumed to satisfy the following (physically

realistic) relationships:

r21 > r2 > 0

r 1 > r20 > 0

!

r I > r e > 0

/3_,f?2,/33> 0

D_ , D2, D,t > 0

8
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w

z :

N

I < 7

Spo << 1

Excluding the above mentioned processes yields the following simplified system of

rate equations

dx x

- -- - Dlz(1 - z- y)+dt - _G(O(i-._-v)+ r2

dy z

dt r2i
2 + 2D,z(l - z- V)+ - D2y(I - z)+
TI

m

N

dz

at
Z

_ + D,y(i- _)++ A(_(i- _)+- i)P

= :

w

(s)

--
w

u

where

(1 - .r - _)+
i-x-y if 1-x-y>__O }0 otherwise

w

m

(1 - z)+

(9)
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The system of equations (8) can be written symbolically as

y' = f(t,y)

m

g_
u

= =

= =
n

w

m

J

.h 5.

U

where

y

X

y

Z

P
L

and f(t,y) =

lI?" f4_{l,, _j_ - _ _ ,.,j+- _ _

x y

T21 T1

X

Z

!

T 1

T2
Dix(l - z - y)+

+ 2o,z(1 - •- y)+ - D_y(1- z)+

-- + o.,_(i - =)++ Z,(_(i - 4+ - 1)P

{ '}
It now follows directly from [3] that if (i) IIi,(t ) is continuous and (ii) the

solution vector, y, is bounded then there exists a unique, continuous solution to

the system (8). The following four theorems may be viewed as a validation of

the model since they show that the solution to the system (8) possesses the same

qualitative properties that one would expect the laser system to possess. The

proofs of the theorems can be found in [,I]. The first theorem establishes the

nonnegativity of the solution vector y, as well as the ground states of thulium and

holmium.

Theorem 1 (Nonnegativity) If IVp(t) > 0 for t > 0 and z(O) >__O, y(O) >_ O,

z(O) >__O, and P(O) >_ 0 tl_en

(i) If l " x(O) - y(O) > 0 then 1-x(t)-y(t) > 0 for alI t > O;

(ii) If i - x(O) - y(O) < 0

for alI t > T;

theTa there exists a T such that i - =(t)- v(t) > o

i0
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(iii) (a) If 1 - x(O) - y(O) > 0

(b) If - ,j(o)< 0

t/,_,, ._.(t) > n (,,_d u(t) > 0 fo,. all t > 0

then a:(t) >_0andg(t) >0 for all t > O;

(iF) If l--z(O) >0 ll, c,, l -- z(t) > 0 for all t > O,"

(v) If 1 - z(o) < o t],_,, the,'e ez,'sts a T" suc]_ that 1 - z(t) > 0 fo; all t > T';

(vi) z(t) > O and P(t) >0 for all t > O.

Theorem 1 states that the normalized ground levels of thulium and holmium

remain nonnegative on 2- = [0, co) o,' in other words that the constraints (9) are

self-enforcing. Consequently, we will drop the "+" subscripts in system (8) for

the remainder of tlLc discussion.

Theorem 2 (Integ,'ability) Let I.l_(t) be positive, continuous, and integrable

on Z. Then if x(O) >__0, y(O) >__0, z(O) >__0, _' P(O) >__0, tlten z(l), y(l), z(t), gJ

P(t) are all intcgrablc on Z.

Theorem 3 (Boundedness)

are all bounded on Z.

Finally, Theorem ,[ gives the behaviour of the solution when the pumping term

Wp(t) decays to zero but doesn't decay quickly enough to be integrable on [0, co).

Theorem 4 Let lI_, z, y, z, and P satisfy the hypotheses of Theorem I. Fur-

lhe,'more, Ict I4_(t) -, 0 _s t _ co. Then, the solution vector y_O as l --- co.

w

m

- .
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Stability Al_alysis

In this section tile equilibrium solutions are obtained and a local stability analysis

is performed. Before doing this however we make the simplifying assumption that

tile spontaneous emission term, spo, has a negligible affect on the asymptotic be-

haviour of the syste_n and hence may be dropped. Furthermore, we will consider

the case of continuous wave (CW) pumping. These two considerations are tanta-

mount to taking _a = 0 and IIS(t ) - i,I_ in system (8), where l'Vp is a positive

constant. Doing this yields the following system of rate equations :

d x 22

...... Dlx(l -- x -- y)
dl I_(1-z y) r2

i
dy

dt

x y

.T'21 T 1
+ 2D,x(1 - a:- y)- D2y(1 - z)

m

r_

dz z
- , + D4y(1 - z) + fl,[_f(1 - z) - lIP

dl r I

i

w

X

{ 1}i (10),lz - Z [1--,(1- :)]-

By setting the right hand side of equations (10) equal to zero, two equilib-

rium points are obtained. Equilibrium poiut 1, denoted I, which has coordl-

nates (xl,yl,zl,0) and equilibrium point 2, denoted II, which has coordinates

(a:2 y=,z 2,P2), where tlie coordinates are expressed in terms of the physical pa-

rameters of the system and are given in [5].

u

12
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tIaving located tim equilib,'iuna points wo now determine the stability proper-

ties of I and II. For the stability of I, introduce tile new hat variables given by

5: = z - z t,+) = V- V t, ; = z - z t, and /5 = p _ 0. Substituting these variables

into the system of rate equations (10) yields

d_ / 1
- (Dt:c I - I,I_ - -- -

ill \ r2 Dr(1 - _I _ yl))

,}° (Dtz t- I,I_)9 + D_(2) 2 + Dt_:!)

dt (1 )- _ + 2D_(1 - z' - _')- 2D,Z /:

- 7, + 2D,x' + D_(1 - =') _)+ D,_'_

+ D2+)_ - 2D,(2) 2 - 2D,}O

g_

(i5

dt

-t-

(' )(D.L - D.tzl)+) + ---r - D.I_ t
T 1

f3,(-y- -i: ' - i)/b-D.,+)i - "yflt}./5,
ga

Now, letting .k" : [2, !), -;, P] 7" _[: _ = [c)t, c)_, 0a, .04]T , the above system may

be written more compactly as

x = Ji2 + _ (il)

where ]t represents Ilte coefficient matrix of the _sociated linear system. This is

an "almost linear" system so I wilt be asymptotically stable if the eigenvalues of ,4

13
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have negative real parts. Invoking the Ilouth-IlurwiLz Theorem [6] the following

necessary and sufficient condition for I to be asymptotically stable is obtained

1
- - - - < o

T¢

The stability analysis fox" II parallels that of I and yields one condition for II to

be asymptotically stal_le. The algebra associated with this condition, however, is

tremendously complicated and hence we resort to a parametric invest;,_ation of

the stability of the equilibrium points.

The numerics indicate there is an interplay of stability between I and II. To see

this, consider l'I_ as a parameter and choose it to be "small". By computing the

equilibrium values of I & II and then checking the Routh-tIurwitz Criteria, the

stability of each point is determined. By gradually increasing l,Vp and repeating

the process we see tt,c're is an interchange of stability that goes like this. For Wp

small, the P coordinate of II is negative, II is unstable, and I is asymptotically

stable (i.e. no tasing). As l_Vp is incre,'used, the P coordinate of II eventually

- reaches zero and thus the two equilibrium points coalesce (this is the threshold of

lasing). F'inally, as 1__, is increased still further, the P coordinate of II becomes

positive, II becomes asymptotically stable, and I l)ecomes unstable (i.e. lasing

OCCURS).

This is illustrated in Figure 2 where p2 is graphed as a function of 1,I_ and the

stability of I and II is noted. The value of I_, at which the interchange of stability

occurs is a bifurcation point and is denoted 11_'. From numerical calculations it

was found that I,l_: "- 0.3,t2 x 10 -s.

I,t

w
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It is also of physical interest to see how ti_e system responds as tile cavity

lifetime of a photon, re, is varied. Choosing r_ small and following the same

procedure as above yields the same interplay of stability as before. Figure 3 gives

p2 as a function of r¢, once again noting the stability of each point. From this we

see that r_ has a bifurcation point which will be denoted %" and is approximated

by %'-" ,t.81 x I0 -s. l Insert Figures 2 & 3 ]

Numerical Analysis

In this section the numerical solution to system (8) is obtained. This is done

by employing either the subroutitm [,SODA (when using a VAX 11/750) or the

sul:_routine DDRIV2 (when using an IBM PC). In either case, all computations

were performed in double precision arithmetic. LSODA was developed in 1987 at,

Lawrence Livermore National Laboratory in Livermore, California by L.R. Pet-

zold and A.C. Hindinarsh. DDRIV2 was developed in 1979 and revised in 1987

by D.K. Kahaner, National Bureau of Standards, and C.D. Sutherland of Los

Alamos Ne_tional Laboratory. Both subroutines were created for the numerical

integration of stiff and nonstlff systems of first order ordinary differential equa-

tions. When the systc_n is stiff, the subroutines use a backward difference formula

(BDF) to perform the numerical integration and when the system is not stiff

they use a higher order Adams method. Both LSODA and DDR.IV2 have the

capability of automatically switching from one method to the other as the sys-

tem passes f,om stiff to nonstiff regions. The BDF method was chosen by both

d.e. solvers throughout the interval of integration which indicates that system

15
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(8) is stiff. Roughly speaking, a system is stiff when tile characteristic equation

of the associated linear system has a root with a "large" negative real part. A

more detailed treatment of stiffness can be found in [7]. The numerical values of

the system parameters are given in Table 1 and were used in the computation of

the numerical solution. [ Insert Table 1 I Employing the program in [8] the

numerical solution of (8) was obtained. A typical example of the numerical solu-

tion is given in Figure ,1 where the upper lasing level and the photon d, .. ,re

plotted. [ Insert Figure 4 J Since _,1_ is constant, a comparison of the "long

time" behaviour of the numerical solutions with that of the equilibrium solutions

can be performed. Using the parameter values in Table 1 and the Routh-Hurwitz

criteria for asymptotic stability it is found that II is asymptotically stable and I

is unstable. The coordinates of II, as predicted by the stability analysis are given

in the left column below and the numerical solutions at t = 200tLs are given in

the right column below.

,r 2 = 0.130.1363 x = 0.130,1372

L_

@ -*

_...a

7J2 = 0.7637,108

7. 2 "9= 0.0-3809,5

I_2 = 0.07,.59,192

y = 0.7637406

z = 0.5238095

P = 0.0759,t91

From this it is evident that the d.c. solver captures the "long time" behaviour of

the solutions extremely well.

Various pumping schemes were considered in the model. Figure 5 gives the

16
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numerical solution for P(t) when the pumpi,,. term is taken to be

= .

t

w

wt{ere a = .01133 . From this figure we see that the photon density has irregular

oscillations and decays rather rapidly, becoming negligible by about t = 250/_s.

I Insert Figure 5 ]

We now consider two modifications that are made to upgrade the mo_], ', The

first is to include the terms that account for the back transfer of energy and that

were excluded at the beginning of the section on qualitative analysis. The second

is to replace f12 & ,_a in the rate equation for the photon density with

&

The rationale for the second change is as follows. A mathematical model that

accurately describes tlm dynamics o[ a laser system must account for both spatial

and temporal variations in the dependent variabIes. Allowing for both types of

variation yields a system of nonlinear partial differential equations (p.d.e.'). Due

to the intractability of the equations and the amount of effort and computer time

involved in solving the system numerically, various averaging techniques are used

to eliminate the spatial dependence and thus make the system more tractable. L.F.

Roberts et.al. [9] gives three such averaging schemes along with their resultant

o.d.e, models. The conclusion of this work is that only the temporal model

obtained by taking a spatial average over the optical length of the cavity, f_, yields

numerical results that agree qualitatively with those predicted by the spatial and

17
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temporM model. This avera!," :cltenm cat, ,,e i,_corporated into tile model by

replacing/32 and /33 123' the qu_,_t_ities given above. Doing this and including the

back transfer terms yields the system

dog x

...... Dlx(1- z - y)a %(z)(1 - x 9) ,-2

dy z

dt r_l
Z + 2Dtx(l - z - y)- D2y(I - z) + Daz(l - z - _5
T1

• f

t 2

=

r

dt

Z

r + D.,9(1 - z) - Dsz(1 - z - Y) +/3,['y(1 - z) - lIP
T 1

t:.

= :

_ =

L.,
I[: _'

d_ = _;[1 -- "/(1 -- 2)1- P --l- /33" (12)

The numerical solution to the system (12) was obtained giving special attention

g
to the qualitative behaviour of the photon density for various values of C_' and --.

g:

Recall that C[' represents the probability of back transfer occurring. The pumping

term was taken to be of the form

Ilk(t) = a2ge -°_ .

In Figure 6 the normalized photon density is graphed for a set of parameter

values that are "close" to the values used in experimentation. Comparing Figure 6

with Figure 5 we see a salient disparity in the qualitative behaviour of the photon

density. The previously observed erratic spiking has been replaced by regular and

temperate oscillations. Figure 7 is a picture of the energy output of the laser

18
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system as displayed oil the screen of an oscill,..cope. [ Insert Figures 8 & 7 ]

By comparing Figure 6 with Figure 7 we see that the behaviour of the photon
i,

density, as predicted by the temporal model (12), is in remarkable agreement with

the behaviour observed in the laboratory (both having about 7 oscillations in 25

Its).

Finally', we further upgrade the model by including the terms associated with

the up-conversion of energy fronl the sir energy level to the sI s energy . .f

holmium. This now brings us full circle since we are back to the full set of

equations (7) with the exception that/32 & J3aare replaced by J3_ &/5_, respectively,

as. defined above. 't'he numerical solution to the system with up-conversion was

computed taking the probability of up-conversion ,_ down-conversion as

q_ = 5.0 x 10 -22 & , I0-23ql = 1.2 x

respectively. Figure 8 shows the interplay between the photon density and the

upper tasing level of l_olmium and Figure 9 gives a phase portrait of the same.

[ Insert Figures 8 ,_. 9 ]

Summary and Conclusions

We have developed a temporal model of the dynamics of an optically pumped

co-doped six-level solid state laser. The model was developed to study the inter-

ionic transfer of enel'gy between thulium and holmium and how this affects the

performance of the laser system. In this paper we report on the quantitative and

qualitative behaviour of the solutions.

10
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The validity of the simplific_l model was established by showing that-- under

appropriate conditions on the pumping term-- solutions to the system exist and

are bounded. IVurtlmr, we showed that if the initial conditions are physically

realistic and the pumping term is well enough behaved, then the solutions are

both nonnegative and integrable (integrability is desirable since calculating the

ef[iciency of the laser system involves integrating over the photon density).

Two equilibrium solutions were obtained and a local stability analysis per-

formed. The interplay of stability between the two equilibrium points was then

dgmonstrated parametrically.

The system was solved numerically and found to be stiff. The d.c. solvers

used performed excepl, i,,. ;ly well and gave numerical solutions that agreed with

the stability analysis and the experimental results. By gradually upgrading the

simplified model it was found that both back transfer and up-conversion affect

the time of lasing as well _s the magnitude and frequency of the laser output

but it is an alternate ave,'aging scheme that has the most dramatic affect on the

qualitative behaviour of the outl>ut pulse.
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Table 1 System Parameters for Tm-Ho:YAG Laser

NT = i X 102_ /cm 3

nr = t × lO:°/cm 3

" 0.3 cm

¢.o_m = i × lO_S/cm 3

e= = 17.5cm

R1 = 1.0

/2_ = 0.95
1

C - crn3/_Ls
40 x 10 _

1 cm3/#s
C_- 475x 1020

i

C 1 = 0.0

T,_ = 4501_s

T20 = 9001Ls

r21 = 9OOtzs

rl ---- ll,O001Ls

I

_-1 = 8, 50O_Ls

90 = 1

91=i

_f=2

cr=Tx 10 -21 cm 2

ql = 0.0

f

ql = 0.0

v = 30,000 cm/#s

T_ -- 1 x 10 -3 t_s

. lVp = 6 x lO-3/cm_._ts

•spo= t × 10-6

w
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Figure 1

Idealized model of the Tm-Ho:YAG laser with the following processes represented:

(a) Stimulated Absorption, (b) Cross Relaxation, (c) Back Transfer, (d) Forward
Transfer, (e) Up-Conversion, (f) Down-Conversion, and (g) Stimulated Emission.

Figure 2

P coordinate of II as a function of tile pumping term.

Figure 3

P coordinate of II as a function of the cavity lifetime r_.

Figure 4

Normalized photon density and upper tasing level with a constant pump.

Figure 5

Normalized photon density with a decaying exponential pump.

Figure 6

Photon density when using an alternate averaging technique.

Figure 7

The energy output of the Tm-tIo:YAG laser as displayed on the screen of an os-

cilloscope.

Figure 8

Upper lasing level a,,d photon density with up-conversion included in the model.

Figure 9

Phase portrait of the upper lasing level and the photon density.
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